Journal ofOrganometaNic Chemistry, 99 **(1975)** *107-114 0* **Elsevier Sequoia S-A., Lausanne -Printed in The Netherlands**

PROPERTIES AND **LIGAND EXCHANGE REACTIONS OF TRLMETHYL(OXfNATO)ANTfMONY(V) COMPLEXES**

YOSHIKANE KAWASAKI and KATSUYA HASHIMOTO

Department of Applied Chemistry, Osaka University, Yamadakami, Suita, Osaka 665 (Japan) **(Received April 15th, 1975)**

Summary

The rate constant, *k*, activation energy, E_a , and activation entropy, ΔS^{\neq} , **were determined by the NMR line broadening technique for the ligand exchange** reactions, $(CH_3)_3\text{SbL}[X-Y]$ (X, Y = Cl, Br, NO₃, OC₆H₄NO₂-p, O₂CCH₃, O_2CCH_2Cl , O_2CCHCl_2 , and O_2CCCl_3 ; L = oxinato and 2-methyl-8-hydroxyqui**nolinato). Most of the ligand exchange reactions in these systems were found to proceed through a bridging intermediate. The rate constants,** *k,* **of these reac**tions are mainly decided by the activation entropy, ΔS^{\neq} , rather than the activa**tion energy, E,. The lability of the ligands in these reactions increases in the** $f_{\text{ollowing order}}: O_2CCH_3 \lesssim O_{26}H_4NO_2. p < O_2CCH_2Cl < O_2CCHCl_2 < O_2CCCl_3 <$ $Cl < Br$.

Introduction

Several structural studies on organo(oxinato)antimony(V) complexes have been reported from the standpoint of the coordination of the oxinato ligands [I-S]. There are, however, very few investigations on the kinetics and mechanisms of the ligand-exchange reactions in organoantimony compounds, although considerable thermodynamic data have been reported for the redistribution reactions of several organometallic compounds of Group VB elements [4-8].

In this study, the rate constant, k, and the activation parameters, E_a , ΔS^{\neq} , and ΔG^* , were obtained by analyzing the temperature-dependent PMR spectra **of the methyl groups for the ligand-exchange reaction 1 (Ox = oxinato ligand).**

 $(CH_3)_3Sb(Ox)X + (CH_3)_3Sb'(Ox)Y \approx (CH_3)_3Sb(Ox)Y + (CH_3)_3Sb'(Ox)X$ (1)

The solvent dependence of the *k*, E_a and ΔS^{\neq} values also was studied.

Experimental

Preparation of $(CH_3)_3Sb(Ox)X (X=NO_3, OC_6H_4NO_2-p$ *,* $OC_6H_2(NO_2)_3-2,4,6$ *,* and O_2CR ; $R = H$, CH_3 , $CH(CH_3)_2$, CH_2CN , CH_2Cl , $CHCl_2$, CCl_3 , CBr_3 , and C_6H_5

All of these complexes were prepared in an essentially identical manner [2], **so that only one typical procedure is given. A mixture of trimethylantimony dibromide (9.8 mmol) in benzene and sodium methoxide (19.6 mmol) in methanol was refluxed for 30 min. After distilling off some potion of solvent, the precipitated sodium bromide was filtered off. To the filtrate was added dilute aqueous nitric acid (9-8 mmol), and the azeotrope of water and benzene was distilled off. 8Hydroxyquinoline (9.8 mmol) in benzene was added to the reaction mixture and the solution was refluxed for about 30 min*_ The yellow solid, obtained after removing the solvent under reduced pressure, was crystal**lized from acetone to give pale-yellow crystals of $(CH_3)_3Sb(Ox)NO_3$.

Most of the complexes were purified by recrystallization from acetone, but for the complexes based on $X = OC_6H_4NO_2-p$ and O_2CCBr_3 , n-hexane and di**chloromethane, respectively, were used in the recrystallization.**

Preparation of $(CH_3)_3Sb(2MeOx)X$ *(X = Cl and Br)*

A mixture of trimethylantimony dichloride (9.8 mmol), 2-methyl-S-hydroxyquinoline (2MeOx) (9.8 mmol) in benzene and sodium methoxide in methanol was refluxed fox 30 min. After filtering off sodium chloride, the solvent was removed under reduced pressure and the residual solid crystallized from acetone to give white crystals of $(CH_3)_3Sb(2MeOx)Cl$ **. The corresponding bromide was prepared from trimethylantimony dibromide by the same method. The properties of these complexes are listed in Table 1.**

Physicul measurements and method of calculation

The UV spectra were recorded with a Hitachi 124 spectrometer using 0.1 cm length quartz cells. The results are shown in Table 2. The IR spectra were obtained in Nujol mulls and in dichloromethane with Hitachi EPI-L and 225 spectrometers equipped with gratings. Some relevant frequencies are shown in Table 3 and in Table 4.

The PMR spectra were measured on a JEOL JNM-PS-100 spectrometer operating at 100 MHz. TMS was used as internal standard. The chemical shift of the methyl groups attached to antimony and the 2 and 4 protons of the oxinato ligand are shown in Table 2. The temperatures were calibrated with a thermocouple immersed in an open, nonspinning NMR tube, partially filled with solvent.

Known amounts of $(CH_3)_3SbLX$ ($[C_A]$) and $(CH_3)_3SbLY$ ($[C_B]$) $(X, Y =$ Cl, Br, $OC_6H_4NO_2$ -p, O_2CCH_3 , O_2CCH_2Cl , O_2CCHCl_2 , and O_2CCCl_3 ; L = Ox and **2MeOx) were dissolved in a 1 ml volumetric flask. The solution prepared in this way was sealed in an NMR tube in vacua, after degassing several times by the freeze-thaw-freeze method.**

^{*} Addition of a small amount of acetylacetone accelerates the reaction when X is the carboxylato group.

Compound	M.p. $C_{\rm O}$	Analysis: found (calcd.) (%)		
		C	н	N
$(CH_3)_3Sb(Ox)X$				
$X = NO3$	167 (dec)	38.32	4.22	7.66
		(3864)	(4.05)	(7.51)
$OC6H4NO2 p$	82	48.24	4.47	6.20
		(48.14)	(4.26)	(6.24)
$OC_6H_2(NO_2)$ ₃ -2,4,6	178 (dec)	39.82	3.19	10.28
		(40.10)	(3.18)	(10.39)
O ₂ CCH ₃	138-140	45.58	4.58	3.83
		(4542)	(4.90)	(3.79)
$O2$ CCH ₂ Cl	140-141	41.37	4.30	3.52
		(4157)	(4.24)	(3.46)
$O2$ CCHCl 2	144-146	38.36	3.76	3.31
		(38.31)	(3.67)	(3.19)
O ₂ CCCl ₃	129 (dec)	35.32	3.16	3.14
		(35.52)	(3.19)	(2.96)
O ₂ CCBr ₃	100 (dec)	27.93	2.64	2.35
		(27.71)	(2.49)	(2.31)
O_2CCH_2CN	135-136	45.37	4.40	7.29
		(45,60)	(4.34)	(7.09)
O ₂ CH	113	43.37	4.50	4.09
		(43.85)	(4.53)	(3.93)
O_2 CC6H5	100	52.27	4.70	3.35
		(52.81)	(4.67)	(3.24)
O_2 CCH(CH ₃) ₂	58-60	48.25	5.61	3.62
		(48.27)	(5.57)	(3.52)
(CH_3) ₃ Sb(2MeOx)X				
$X = CI$	165-167	43.39	4.60	4.00
		(43.32)	(4.75)	(3.89)
Br	154-155	38.26	4.33	3.64
		(38.56)	(4.23)	(3.46)

ANALYTICAL DATA FOR $(CH_3)_3Sb(0x)X$ AND $(CH_3)_3Sb(2Me0x)X$

TABLE 1

The theoretical spectra for the ligand-exchange reaction 1 were calculated by using the method reported in the literature [9]. The rate constant, *k, was* **calculated by eqn. 2,**

$$
k = 1/(\tau_A \times [C_B]) = 1/(\tau_B \times [C_A])
$$
\n(2)

where the τ_A and τ_B are mean residence times of the species A and B, respectively and $[C_A]$ and $[C_B]$ are their concentrations. The τ_A and τ_B were determined **by visual comparison of observed and calculated PMR line shapes of the methyl groups attached to the antimony atoms. Figure 1 shows a typical Arrhenius plot** for the $(CH_3)_3SbOx[Cl-Br]^*$ system measured in CH_2Cl_2 , in which different values were taken for $[C_A]$ and $[C_B]$. Table 5 gives the rate constants, *k*, and activation parameters, E_a , ΔS^{\neq} and ΔG^{\neq} , for the several ligand-exchange systems $(CH_3)_3$ SbL $[X-Y]$.

^{*} We use the abbreviation (CH₃)₃SbL[X-Y] for eqn. 1.

PMR- AND UV-SPECTRAL DATA FOR (CH₃)₃Sb(Ox)X AND (CH₃)₃Sb(2MeOx)X IN CH₂Cl₂

 a Obscure 1 by the other absorption.

TABLE 3

RELEVANT IR FREQUENCIES OF THE NO₃ GROUP OF $[(CH_3)_56(NO_3)]_nX$ AND CH₃NO₃

 a Ref. 13. b Ref. 14.

TABLE 4

RELEVANT IR FREQUENCIES OF $(CH_3)_3$ Sb $(O_2CR)X$ (in cm⁻¹)

 a Ref. 14.

TABLE 2

TABLE 5

ACTIVATION PARAMETERS FOR THE LIGAND-EXCHANGE SYSTEM (CH3)3Sb(L)[X--Y] AT 25 $^{\rm o}$ C $^{\rm o}$

^{*a*} Error estimated at the 95% confidence level, ^{*b*} Ref. 8. ^c Value at 64°C. ^{*d*} Values at 32°C. ^{*e*} ΔH^{\neq} value.

Results and discussion

UV- and IR-spectra

As is shown in Table 2, the λ_{max} of the longest wave length for $(\text{CH}_3)_3\text{Sb}$ -(Ox)Cl and $(CH_3)_3Sb(Ox)Br$ appears at 353 and 352 nm, respectively*. These

^{*} These values are different from those reported previously [2,3]. The reason is that the reported values were obtained by using 1 cm quartz cells and therefore at a concentration of about 10⁻⁴ mol_ll. The present values, however, were obtained at the concentration of about 10⁻³ mol_ll.

values give an indication that there is an interaction between the Sb atom and the N atom of the oxinato ligand according to the criterion given by Moeller et aI_ [lo]. However, in the corresponding 2-methyloxinato complexes, the band appears in the region where chelation would not be expected. In $(CH_3)_3Sb$ $fOx)OC_6H_4NO_2-p$, the band due to the oxinato ligand is overridden by a strong band of the OC₆H₄NO₂-p group. The UV criterion, therefore, cannot be used **for the chelation of the oxinato ligand. However, in this compound also, Sb-N** interaction is to be expected, since in an analogous compound, $(CH_3)_3Sb(Ox)OH$, **the W-spectrum exhibits a band at 350 nm [ll]_ In every carboxylato complex,** $\rm (CH_3)_3Sb(Ox)O_2CR$, studied and in the nitrato complex, $\rm (CH_3)_3Sb(Ox)NO_3$, the **band appears in the region 330-340 nm. This region lies between that of the typically chelated complexes at 350-430 nm and that of the non-chelated compounds at 320-300 nm [2,12]. Therefore, in these carboxylato and nitrato complexes, the Sb-N interaction is probably weak if present at all.**

As can be seen from Table 3, the separation between the $v_{\rm{asym}}(NO_2)$ and $\nu_{\text{sym}}(NO_2)$ values increases in the order: $[(CH_3)_3SbNO_3]_2O < (CH_3)_3Sb(Ox)$ - $NO₃ < (CH₃)₃ Sb(NO₃)₂ < CH₃ NO₃$. This result indicates that the deviation **from the** $C_{3\nu}$ **symmetry of the NO₃ group increases in the above order and is** the smallest in $[(CH_3)_3SbNO_3]_2O$. If we assume that the $\nu(N-O)$ value reflects bonding between the NO₃ group and the Sb atom, as is in transition-metal nitrato complexes [13], the Sb-O bond in $(CH_3)_3Sb(Ox)NO_3$ is more ionic than that in (CH_3) ₃Sb(NO₃)₂ and is similar to that in $[(CH_3)$ ₃SbNO₃]₂O [14]. **This conclusion is in agreement with that resulting from the behavior of the** $\nu_{\text{asym}}(NO_2)$ and $\nu_{\text{sym}}(NO_2)$ values.

In Table 4, some relevant IR data for the carboxylato complexes of trimethylantimony, $(CH_3)_3Sb(Ox)O_2CR$ and $(CH_3)_3Sb(O_2CR)_2$, are shown. The v_{asym} (O-C-O) always appears at a low frequency and the v_{sym} (O-C-O) exhibits a high frequency for the former as compared to the latter $[14]$. The $\nu(Sb-O)$ **value between the carboxylato group and the antimony atom is shifted to low frequency** by substitution of one of the carboxylato groups of $(CH_3)_3Sb(O_2CR)_2$ **by the oxinato group. These results suggest that the Sb-0 bond becomes more ionic and probably weaker in the oxinato-carboxylato complexes than that in the dicarboxylato complexes. Similar results have been reported for the M-O-C(=O)R type complexes [15].**

Similarly, the $\nu(Sb-Cl)$ band is shifted to red in $(CH_3)_3Sb(Ox)Cl (234 cm^{-1})$ in comparison with that in $\text{(CH}_3)_3\text{SbCl}_2$ (280 cm⁻¹). These observations imply **that the oxinato group has the effect of making the Sb-X bond more ionic in** the $(CH_3)_3Sb(Ox)X$ complexes. One of the reasons for this effect of the oxinato **group is found in the coordination of the N atom of the oxinato group to the Sb atom_**

Ligand exchange reaction

As can be seen from Table 5, the ΔS^+ values are negative in all of the ligand-exchange reaction systems $(CH_3)_3SbOx[X-Y]$ studied; and the system which shows a larger negative ΔS^{\neq} value gives, in general, a smaller E_a value. In most of the systems, the rate constant, k , becomes small when the ΔS^{\neq} value becomes more negative and the E_a value becomes small. The rate constant, k , therefore, is mainly affected by the entropy term, ΔS^* , rather than the activa**tion energy, E,. By comparing the** *k* **values in Table 5, the lability of the ligands as revealed from the rate constant is seen to increase in the same order as the** acid strength of the free carboxylic acid: $O_2CCH_3 \lesssim O C_6H_4NO_2-p < O_2CCH_2Cl <$ O_2 CCHCl₂ < O_2 CCCl₃ < Cl < Br.

The relatively large E_a and ΔS^{\neq} values for the CH_3 ₃SbOx[Br-Cl] system **are probably due to the fact that the ligand exchange takes place through sol**vent-separated ion pairs I or II, as was proposed for the CH_3 ₃SbCI_ICl-NO₃ **system in nitrobenzene [S] in the transition state. In contrast to this system, a bridging intermediate III may be a probable path for the halogen exchange in** the $(\text{CH}_3)_3\text{Sb}(2\text{MeOx})[\text{Br}-\text{Cl}]$ system, since the E_a and ΔS^{\neq} values are very small. In $(CH_3)_3SbOx[Br-O_2CR]$ systems, the bridging intermediate IV may also

be a preferential path for the ligand exchange for the same reason as in the $(\text{CH}_3)_3\text{Sb}(2\text{MeOx})$ [Br-Cl] system. The relatively large negative ΔS^{\neq} values for the $(CH_3)_3SbOx[Cl-NO_3]$ and $(CH_3)_3SbOx[Br-OC_6H_4NO_2-p]$ systems suggest a possibility of the bridging of the NO₃ and OC₆H₄NO₂-p groups in the transi**tion state, respectively.**

Some of the results for the solvent dependence of the activation parameters for the $(CH_3)_3SbOx[Cl-O_2CCH_3]$ system are shown in Table 5. One notable **result is that the** ΔS^{\neq} **value becomes less negative and at the same time the** E_{a} value becomes large on changing the solvent from CHCl₂CHCl₂ to CH₃NO₂. The ΔS^{\neq} term is again the main factor which decides the rate constant. The rate constant and the activation parameters for this system in CH₃NO₂ are very similar to those for the $(CH_3)_3SbOx[Br-Cl]$ system in CH_2Cl_2 . Therefore, the **above results indicate that in the polar solvent the Sb-X bond is highly polarized so that it is easy to form solvent-separated ion pairs in the transition state.**

Acknowledgement

Thanks are &de to Professor R. Okawara of Osaka University for his continu ous encouragement.

References

- 1 Y. Matsumura and R. Okawara, Inorg. Nucl. Chem. Lett., 4 (1968) 521.
- **2 Y. Kawasaki, Inorg, Nucl. Chem. Lett.. 5 (1969) 805.**
- 3 H.A. Meinema, E. Rivarola and J.G. Noltes, J. Organometal. Chem., 17 (1969) 71.
- **4 J.C. Lockhart. Chem. Rev., 65 (1965) 131.**
- **5 H. Weingartenand J.R. Van Wazer, J. Amer. Chem. Sot., 88 (1966) 2700.**
- **6 C.G. Moreland, M&I. O'Brien, C.E. Douthit end G.G. Long. Inorg. Chem.. 7 (1968) 834.**
- **7 R. Moedritzer. OrganometaIIic Reactions. Wiley-Interscience. New York. N-Y.. 1971.**
- **8 C.G. MoreIand and R.J. Beam, Inorg. Chem.. 11<1972) 3112.**
- **9 C.S. Johnson. Jr, Advances In Magnetic Resonance. Vol. 1. Academic Press. New York. N-Y.. 1965.**
- **10 (a) T. MoelIer and A.J. Cohen, J. Amer. Chem.** Sot ,72 **(1950) 3546; <b) T. Moeller and F.L. Pundsack. J. Amer. Chem. Sot.. 76 (1954) 617.**
- **11 Y. Kawasaki. to be published_**
- 12 M. Wada and R. Okawara, Inorg. Nucl. Chem. Lett., 5 (1969) 355.
- **13 B.M. Gatehouse. S.E. Livingston and R.S. Nyhohn. J. Chem. Sot.. (1957) 4222: idem. J. Inorg. Nucl. Chem. 8 (1958) 75.**
- 14 M. Shindo and R. Okawara, J. Organometal. Chem., 5 (1966) 537.
- **16 K_ Nakamoto. Infrared Spectra of Inorganic and Coordination Compounds. Wiley-Interscience. New York. N.Y.. 1970.**